Ocular Tissue Conversion and Activity Profile of QLS-101, a Novel Topical IOP-Lowering Therapeutic

Cynthia L. Steel, MBA, PhD¹, Hemchand K. Sookdeo, BA¹, Thurein Htoo, MS, MBA¹, Ralph Casale, BS¹, Uttio Roy Chowdhury PhD², Michael P. Fautsch, PhD², Barbara M. Wirostko, MD, FARVO¹,³

¹Qlaris Bio, Inc., Wellesley, MA; ²Mayo Clinic, Department of Ophthalmology, Rochester, MN; ³University of Utah, Moran Eye Center, Salt Lake City, UT

K_{ATP} channel activity of QLS-101 and QLS-100

QLS-101

EC₅₀ (µM)

 $>100 \pm NA$

 0.534 ± 0.05

 1.35 ± 0.12

 5.49 ± 0.99

Compound Concentration (µM)

QLS-100 activates K_{ATP} channels, but QLS-101 does not.

Time (min)

QLS-100

Test Compound

QLS-101

QLS-100

Cromakalim

Pinacidil

Purpose

To evaluate the conversion profile and *in vitro* activity of QLS-101, a novel topical IOP-lowering therapeutic, using human ocular tissues.

Introduction

- Elevated intraocular pressure (IOP) is the only treatable risk factor for glaucoma¹
- Current treatments for elevated IOP target either aqueous humor production, or aqueous humor outflow through either the trabecular or uveoscleral outflow pathways
- Some K_{ATP} channel openers have demonstrated ocular hypotensive effects in normotensive animals²⁻⁵
- QLS-101 is being developed as a water-soluble prodrug of a K_{ATP} channel opener
- In preclinical studies, QLS-101 has an excellent tolerability profile (Abstract #353397)
- In this study, we evaluated the ability of QLS-101 to activate K_{ATP} channels, and determined whether QLS-101 can be converted to its active moiety, QLS-100

Methods

Ion Channel Activity

Human embryonic kidney cells stably expressing human $K_{ir}6.2/SUR2B$ K_{ATP} channel subunits were incubated with QLS-101 or QLS-100 (0.003-100 μ M), and changes in channel activity were quantified by fluorescence.

Enzymatic Conversion

QLS-101 (5 mM) was incubated at 37°C in Tris buffer (pH 7.4) with either human alkaline phosphatase (ALP), acid phosphatase (ACP), or 5'-nucleotidase (5'-NT) for 15, 30, or 120 minutes. Cleavage was detected with a phosphate detection reagent.

QLS-101 tissue conversion

Human donor eyes (70yo Female) were obtained within 9 hours of death, various tissues were isolated, homogenized, and assayed for protein content. Equal amounts of protein were incubated with QLS-101 (10 μM) at 37°C for either 4h or 24h. Quantity of QLS-100 is expressed as a percentage of QLS-101.

Plasma Conversion

Plasma from Sprague Dawley rat, Dutch-belted rabbit, beagle dog, cynomolgus monkey, and human were incubated with 2 μ M either QLS-101 or QLS-100 at 37°C. Reactions were quenched at 0, 2h, 4h, 6h, 8h, and 24h, and drug presence quantified by HPLC.

Results

Tissue	Time Point (h)	Percent Conversion	
Ciliary Body	4	_	
Ciliary Body	24	2.55%	
Optic Nerve	4	_	
Optic Nerve	24	0.89%	
lui o	4	0.90%	
Iris	24	3.93%	
Coloro	4	_	
Sclera	24	1.61%	
Detine	4	_	
Retina	24	0.74%	
	4	_	
Cornea	24	0.77%	
Trobooulor Machana	4	_	
Trabecular Meshwork	24	1.60%	

QLS-101 is converted to QLS-100 in human ocular tissues with highest conversion in iris, sclera, and TM.

QLS-101 conversion in plasma OLS-101 OLS-100

Species	QLS-101 Present (%)		QLS-100 Present (%)		QLS-101 T ₁
	0 h	24 h	0 h	24 h	(hh:mm)
Sprague Dawley Rat	100%	93.7%	0.2%	0.2%	68:05
Dutch-belted Rabbit	100%	97.3%	0.2%	0.2%	100:12
Beagle Dog	100%	95.4%	0.1%	0.1%	69:52
Cynomolgus Monkey	100%	80.3%	0.2%	0.2%	45:37
Human	100%	81.3%	0.2%	0.1%	32:13

QLS-101 is minimally converted to QLS-100 in plasma from multiple species

Conclusions

- QLS-101 is an inactive prodrug, requiring conversion to QLS-100 by alkaline phosphatase to activate K_{ATP} channels
- Conversion of QLS-101 to QLS-100 by ocular tissues supports topical application and local conversion for downstream ocular hypotensive activity

Phase 2 dose-ranging clinical trials utilizing QLS-101 in patients with POAG or NTG are currently ongoing.

- 1. Kass MA et al., Arch Ophthalmol. 2002;120(6):701-13
- 2. Roy Chowdhury U et al. IOVS. 2017;58(13):5731-42.
- 3. Roy Chowdhury U et al., *PLOS ONE*. 2020; 15(4): e0231841.
- 4. Roy Chowdhury U et al., JOPT. 2021; Mar 30.
- 5. Roy Chowdhury U and Fautsch MP. Exp Eye Res. 2019;178:225

Copyright & Contact

© Qlaris Bio, Inc. 2021 (<u>www.qlaris.bio</u>)
Cynthia L. (Pervan) Steel, PhD (<u>csteel@qlaris.bio</u>)

Cleavage of QLS-101 by Various Phosphatases in vitro

─ 9.33 nM

→ 18.7 nM

QLS-101 is converted in vitro to QLS-100 by alkaline phosphatase, but not acid phosphatase or 5'-nucleotidase

→ 62.2 nM